

ML Cheatsheet

A comprehensive cheat sheet covering various machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with deep learning architectures.

Supervised Learning

Regression Algorithms	Classification Algorithms
Linear Regression: Models the relationship between variables by fitting a linear equation to observed data.	Logistic Regression: Predicts the probability of a binary outcome, classifying data points into one of two categories.
Example: Predicting house prices based on square footage.	Example: Classifying patients as having a disease or not.
Logistic Regression: Predicts the probability of a binary outcome. Example: Predicting whether an email is spam or not.	K-Nearest Neighbors (KNN): Classifies data points based on the majority class among its k-nearest neighbors.
Polynomial Regression: Models non-linear relationships by fitting a polynomial equation to the data. Example: Modeling growth rates that increase over time.	Example: Image recognition tasks. Support Vector Machines (SVM): Finds the optimal hyperplane to separate classes in high-dimensional space.
Ridge Regression: Linear regression with L2 regularization to prevent	Example: Text categorization.
overfitting. Use Case: When multicollinearity is present among the features.	Decision Trees: Classifies data by recursively splitting the data based on feature values.
Lasso Regression: Linear regression with L1 regularization, which can	Example: Credit risk assessment.
perform feature selection. Use Case: Situations with many features, some of which are irrelevant.	Random Forest: Ensemble of decision trees to improve classification accuracy and reduce overfitting.
ElasticNet: Combines L1 and L2 regularization.	Example: Complex classification tasks with many features.
Use Case: When you need both regularization and feature selection.	Naive Bayes: Applies Bayes' theorem with strong (naive) independence assumptions between the features.
Support Vector Machines (SVM): Effective in high dimensional spaces.	Example: Spam filtering.
Example: Regression tasks with complex, non-linear relationships.	Stochastic Gradient Descent: Optimization algorithm used to train linear classifiers.
Decision Trees: Tree-like model that makes decisions based on features.	
Example: Predicting customer churn based on various attributes.	Example: Large-scale classification problems.
Random Forest: Ensemble of decision trees.	Gradient Boosting: Builds an ensemble of weak learners (usually decision trees) sequentially, with each tree correcting errors of the previous ones.
Example: Improving prediction accuracy and reducing overfitting in regression tasks.	Example: Fraud detection.
	AdaBoost: Adaptive Boosting; focuses on correcting mistakes of previous classifiers.
	Example: Face detection.
	XGBoost, LightGBM, CatBoost: Advanced gradient boosting algorithms known for their efficiency and accuracy.

Example: Used widely in competitive machine learning.

Unsupervised Learning

Clustering Algorithms	Dimensionality Reduction
K-Means: Partitions data into k clusters based on distance to centroids. Example: Customer segmentation.	PCA (Principal Component Analysis): Reduces dimensionality by projecting data onto principal components.
K-Medoids: Similar to K-Means but uses medoids (actual data points) as	Example: Noise reduction and feature extraction.
cluster centers. Example: Robust to outliers compared to K-Means.	t-SNE: Visualizes high-dimensional data by reducing it to a lower- dimensional space while preserving local similarities.
Mean-Shift: Discovers clusters by shifting points towards the mode of the	Example: Visualizing clusters in gene expression data.
data distribution.	UMAP: Uniform Manifold Approximation and Projection; similar to t-SNE but faster and preserves more of the global structure.
Example: Image segmentation and object tracking.	Example: Visualizing and exploring high-dimensional datasets.
DBSCAN: Density-Based Spatial Clustering of Applications with Noise; identifies clusters based on data point density.	ICA (Independent Component Analysis): Separates mixed signals into independent components.
Example: Anomaly detection.	Example: Blind source separation.
OPTICS: Ordering Points To Identify the Clustering Structure; an extension of DBSCAN that creates a cluster ordering.	LDA (Linear Discriminant Analysis): Supervised dimensionality reduction technique to find the best linear combination of features that separates
Example: Identifying hierarchical cluster structures.	classes.
HDBSCAN: Hierarchical DBSCAN; combines hierarchical clustering with DBSCAN to find clusters of varying densities.	Example: Face recognition.
Example: More robust to parameter selection than DBSCAN.	Semi-Supervised Learning
Agglomerative Clustering: Bottom-up hierarchical clustering; each data point starts as a cluster, and clusters are merged iteratively. Example: Document clustering.	Self-Training: Iteratively trains a model on labeled data and then uses the model to predict labels for unlabeled data, adding high-confidence predictions to the labeled set.
BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies; builds	Example: Document classification with limited labeled data.
a CF-tree to summarize cluster information.	Label Propagation: Assigns labels to unlabeled data points based on the labels of their neighbors in a graph.
Example: Large datasets where memory is limited.	
Affinity Propagation: Clusters data points based on message passing	Example: Image segmentation.
between pairs of data points.	Label Spreading: Similar to label propagation but uses a different algorithm
Example: Identifying exemplars in a dataset.	to propagate labels through the graph.
Gaussian Mixture Models (GMM): Models data as a mixture of Gaussian distributions.	Example: Community detection in social networks.
Example: Soft clustering and density estimation.	

Reinforcement Learning

Reinforcement Learning	Deep Learning
Q-Learning: An off-policy RL algorithm that learns the optimal Q-value for each state-action pair.	CNN
	LeNet: An early CNN architecture for digit recognition.
Example: Training an agent to play a game.	France las line de mittere dinitere en ritiere
Deep Q-Networks (DQN): Uses a deep neural network to approximate the Q-function.	Example: Handwritten digit recognition. AlexNet: A deeper CNN architecture that won the ImageNet competition in
Example: Playing Atari games.	2012.
SARSA: An on-policy RL algorithm that updates the Q-value based on the action taken in the current state.	Example: Image classification.
	VGGNet: A CNN architecture with very deep layers.
Example: Robot navigation.	Example: Image classification and object detection.
Policy Gradient Methods: Directly optimizes the policy without using a value function.	GoogLeNet (Inception): A CNN architecture that uses inception modules to capture features at different scales.
Example: Training a robot to walk.	Example: Image classification.
Actor-Critic: Combines policy gradient and value-based methods.	ResNet: A CNN architecture that uses residual connections to train very deep networks.
Example: Continuous control tasks.	Example: Image classification and object detection.
Proximal Policy Optimization (PPO): A policy gradient method that	
onstrains policy updates to ensure stable learning.	DenseNet: A CNN architecture that connects each layer to every other layer in a feedforward fashion.
Example: Complex control tasks with high-dimensional state spaces.	Example: Image classification.
Deep Deterministic Policy Gradient (DDPG): An actor-critic algorithm for continuous action spaces.	EfficientNet: A CNN architecture that scales all dimensions of the network
	(width, depth, and resolution) in a principled way.
Example: Robotics and autonomous vehicles.	Example: Image classification with high efficiency.
	MobileNet: A CNN architecture designed for mobile devices with limited resources.
	Example: Mobile vision applications.
	SqueezeNet: A CNN architecture that uses fire modules to reduce the
	number of parameters.

Example: Image classification with a small model size.

Deep Learning Algorithms

Vanilla RNN: A basic recurrent neural network.	Multilaver Perceptron (MLP): A basic
Example: Sequence modeling.	feedforward neural network with one or more hidden layers.
Long Short-Term Memory (LSTM): A type of RNN that is designed to handle the vanishing gradient problem. Example: Natural language processing.	Example: Classification and regression tasks.
	Deep Neural Networks (DNN): Neural networ with multiple hidden layers.
Gated Recurrent Unit (GRU): A simplified version	Example: Complex pattern recognition tasks.
f LSTM.	
Example: Machine translation.	
Bidirectional RNN: Processes the input sequence in both directions.	
Example: Text classification.	
Deep RNNs: RNNs with multiple layers.	
Example: Speech recognition.	
Echo State Networks (ESN): A type of RNN with a randomly connected reservoir.	
Example: Time series prediction.	