A comprehensive cheat sheet covering DNA structure, experiments proving DNA as genetic material, replication processes, and key figures in its discovery.

Evidence for DNA as Genetic Material

Griffith's Experiment (1928)	Avery, MacLeod, & McCarty (1944)	Hershey & Chase Experime
Objective: To understand the difference between virulent and non-virulent strains of <i>Streptococcus pneumoniae</i> .	Objective: To identify the molecule responsible for transformation in Griffith's experiment.	Objective: To determine whe
	Experiment: Repeated Griffith's experiment using purified cell extracts from S strain.	Bacteriophages: Viruses that
S Strain (Virulent): Causes pneumonia and kills mice.	Procedure:	Experiment:
R Strain (Non-Virulent): Does not cause pneumonia and does not kill mice.	not cause pneumonia and does not kill mice.	
Experiment 1: Live S strain \rightarrow Mouse dies.	 Removed proteins - Transformation still occurred. Removed RNA - Transformation still occurred. Removed DNA - Transformation did NOT occur. 	Labeled phage DINA with A sheled phage protein w
Experiment 2: Live R strain \rightarrow Mouse lives.		2. Labeled phage protein w
Experiment 3: Heat-killed S strain → Mouse lives.		Procedure:
Experiment 4: Heat-killed S strain + Live R strain → Mouse dies.	Conclusion: DNA is the genetic material responsible for transformation, at least in bacteria.	1. Infected bacteria with la
Conclusion: Transformation occurred, where the R strain acquired virulence from the dead S strain. Griffith did not identify the transforming principle.		 Separated phages from Measured radioactivity in
		Results: Radioactive phosph

remained outside.

Conclusion: DNA is the genetic material that is injected into the bacteria and used to produce more bacteriophages. Protein is not the genetic material.

DNA Structure and Components

Nucleotide Components		DNA vs. RNA Nucleotides		Chargaff's Rules
DNA is a nucleic acid composed of nucleotides:		DNA:	RNA:	Chargaff's Rules:
Deoxyribose: A 5-carbon sugar.		Contains deoxyribose sugar.	Contains ribose sugar.	The amount of Adenine (A) e
Phosphate Group (PO ₄): Attached to the 5' carbon of the sugar.		Uses Thymine (T) as a base.	Uses Uracil (U) instead of Thymine.	The amount of Cytosine (C)
Nitrogenous Base: Adenine (A), Thymine (T), Cytosine (C), Guanine (G).		Phosphodiester Bonds		The ratio of A-T and G-C var
Hydroxyl Group (-OH): Attached at the 3' carbon of the sugar.				
Purines vs. Pyrimidines		Phosphodiester Bond: Bond between adjacen	t nucleotides.	
		Formed between the phosphate group of one nucleotide and the 3' -OH of the next nucleotide.		
Purines:	Pyrimidines:	Creates a chain of nucleotides with a 5'-to-3' orientation.		
Two-ringed structures (Adenine and Guanine).	Single-ringed structures (Cytosine and Thymine).			

DNA Structure and Replication

Watson and Crick Model	Antiparallel Configuration	DNA Replication Models
Watson and Crick (1953):	Antiparallel: Each phosphodiester strand has inherent polarity based on the orientation of the sugar-	Conservative Model: Both st
Deduced the structure of DNA using evidence from Chargaff, Franklin, and others.	phosphate backbone.	molecules.
DNA molecule is made of two intertwined chains of nucleotides, forming a double helix structure.	One end terminates in 3' OH, and the other in 5' PO_4 .	Semiconservative Model: Da
Double Helix Structure	Strands have either 5'-to-3' or 3'-to-5' polarity.	(Correct model).
	The two strands of a single DNA molecule have opposite polarity to one another.	Dispersive Model: New DNA
Double Helix: Two strands arranged as a double helix.		
Forms two grooves: major groove and minor groove.		
Strands connected via hydrogen bonds between bases on opposite strands.		
Base-Pairing: A-T (2 hydrogen bonds), G-C (3 hydrogen bonds).		

Consistent diameter and stability due to thousands of low-energy hydrogen bonds.

ent (1952)

ether DNA or protein is the genetic material in bacteriophages.
t infect bacteria, composed of DNA and protein.
h radioactive phosphorus (³² P).
vith radioactive sulfur (³⁵ S).
ibeled phages.
bacteria.
nside the bacteria.

 $^{\rm 2}$ phosphorus ($^{\rm 32}\text{P})$ was found inside the bacteria, while radioactive sulfur ($^{\rm 35}\text{S})$

equals the amount of Thymine (T).

equals the amount of Guanine (G).

ries by species.

rands of parental DNA remain intact; new DNA copies consist of all new

aughter strands each consist of one parental strand and one new strand

is dispersed throughout each strand of both daughter molecules after

DNA Replication Process

Requirements for DNA Replication	DNA Polymerase	Semi-Discontinuous Replication
1. Template: Parental DNA molecule to copy.	DNA Polymerase: Matches existing DNA bases with complementary nucleotides and links them to build	Semi-Discontinuous: DNA polymera
	new DNA strands.	Leading Strand: Synthesized contin
2. Enzymes: Proteins to do the copying.	Features:	Lagging Strand: Synthesized discor
3. Building Blocks: Nucleotide triphosphates to make the copy.	 Adds new bases to the 3' end of existing strands. 	Enzymes Involved in Lagging-Str
Stages of DNA Replication	Synthesizes in the 5'-to-3' direction.	DNA Pol III: Synthesizes Okazaki fra
	Requires a primer of RNA to initiate synthesis.	Primase: Makes RNA primer for each
1. Initiation: Replication begins at specific sites called origins of replication.		DNA Pol I: Removes all RNA primers
2. Elongation: New strands of DNA are synthesized by DNA polymerase.		DNA Ligase: Joins Okazaki fragmen
3. Termination: Replication is terminated, often at specific termination sites or when replication forks		
meet.		DNA Gyrase (Topoisomerase): Unlin

polymerase can only synthesize in the 5'-to-3' direction.

I continuously from an initial primer.

discontinuously with multiple priming events, creating Okazaki fragments.

jing-Strand Synthesis

azaki fragments.

r for each Okazaki fragment.

primers and replaces them with DNA.

fragments to form complete strands.

se): Unlinks two copies of DNA at the termination site.