

Equations

A concise reference for fundamental equations and formulas across various mathematical and scientific domains. From basic algebra to advanced calculus and physics, this cheat sheet provides a quick guide to key concepts and their applications.

Algebraic Formulas

Basic Identities

Quadratic Formula

For a quadratic equation of the form $ax^2+bx+c=0$, the solutions for x are given by: $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Discriminant: $\Delta=b^2-4ac$

- If $\Delta > 0$, there are two distinct real roots.
- If $\Delta=0$, there is exactly one real root.
- If $\Delta < 0$, there are no real roots (two complex conjugate roots).

Logarithms and Exponents

Product Rule:	$\log_b(mn) = \log_b(m) + \log_b(n)$
Quotient Rule:	$\log_b(\tfrac{m}{n}) = \log_b(m) - \log_b(n)$
Power Rule:	$\log_b(m^p) = p \log_b(m)$
Change of Base:	$\log_b(a) = rac{\log_{\mathrm{c}}(a)}{\log_{\mathrm{c}}(b)}$
Exponential Growth:	$A = P(1+r)^t$
Exponential Decay:	$A = P(1-r)^t$

Geometric Formulas

Area Formulas

Square:	$A = s^2$
Rectangle:	A = lw
Triangle:	$A=rac{1}{2}bh$
Circle:	$A=\pi r^2$
Trapezoid:	$A=rac{1}{2}(b_1+b_2)h$
Parallelogram:	A = bh

Volume Formulas

Cube:	$V=s^3$
Rectangular Prism:	V=lwh
Sphere:	$V=rac{4}{3}\pi r^3$
Cylinder:	$V=\pi r^2 h$
Cone:	$V=rac{1}{3}\pi r^2 h$
Pyramid:	$V=rac{1}{3}Bh$

Surface Area Formulas

Cube:	$SA = 6s^2$
Rectangular Prism:	SA = 2(lw + lh + wh)
Sphere:	$SA=4\pi r^2$
Cylinder:	$SA=2\pi r^2+2\pi r h$
Cone:	$SA=\pi r^2+\pi r l$

Trigonometric Formulas

Basic Trigonometric Functions

Sine:	$\sin(heta) = rac{ ext{opposite}}{ ext{hypotenuse}}$
Cosine:	$\cos(\theta) = rac{ ext{adjacent}}{ ext{hypotenuse}}$
Tangent:	$ an(heta) = rac{ ext{opposite}}{ ext{adjacent}}$
Cosecant:	$\csc(heta) = rac{1}{\sin(heta)}$
Secant:	$\sec(\theta) = \frac{1}{\cos(\theta)}$
Cotangent:	$\cot(heta) = rac{1}{\tan(heta)}$

Pythagorean Identities

$\sin^2(\theta) + \cos^2(\theta) = 1$
$1+\tan^2(\theta)=\sec^2(\theta)$
$1+\cot^2(\theta)=\csc^2(\theta)$

Angle Sum and Difference Formulas

Sine Sum:	$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$
Sine Difference:	$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(1$
Cosine Sum:	$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$
Cosine Difference:	$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$
Tangent Sum:	$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A) \tan(B)}$
Tangent Difference:	$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A) \tan(B)}$

Page 1 of 3 https://cheatsheetshero.com

Basic Derivatives

Power Rule:	$rac{d}{dx}(x^n)=nx^{n-1}$
Constant Multiple Rule:	$rac{d}{dx}(cf(x)) = crac{d}{dx}(f(x))$
Sum Rule:	$\frac{d}{dx}(f(x)+g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$
Product Rule:	$rac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$
Quotient Rule:	$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$
Chain Rule:	$rac{d}{dx}(f(g(x)))=f'(g(x))g'(x)$

Basic Integrals

Power Rule:	$\int x^n dx = rac{x^{n+1}}{n+1} + C, n eq -1$
Integral of 1/x:	$\int rac{1}{x} dx = \ln x + C$
Integral of e^x:	$\int e^x dx = e^x + C$
Integral of sin(x):	$\int \sin(x) dx = -\cos(x) + C$
Integral of cos(x):	$\int \cos(x) dx = \sin(x) + C$

Fundamental Theorem of Calculus

Part 1: If f is continuous on [a, b], then the function $oldsymbol{F}$ defined by

$$F(x) = \int_a^x f(t)dt$$
 $a \le x \le b$

is an antiderivative of f, that is, F'(x) = f(x)

Part 2: If f is continuous on [a, b], then

$$\int_a^b f(x)dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, F' = f.

Equations Cheat Sheet

Algebraic Equations

Linear Equation: ax + b = 0Solve for x:

$$x = -\frac{b}{a}$$

$$ax^2 + bx + c = 0$$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

System of Linear Equations (2 variables):

$$a_1x + b_1y = c_1$$

$$a_2x + b_2y = c_2$$

Solve using substitution, elimination, or matrices.

Factoring:

$$a^2 - b^2 = (a+b)(a-b)$$

$$(a+b)^2 = a^2 + 2ab + b$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Polynomial Equations:

Use factoring, synthetic division, or numerical methods to find roots.

Exponential Equations:

$$a^x = b$$

Solve using logarithms:

$$x = \frac{\log(b)}{\log(a)}$$

Logarithmic Equations:

$$\log_a(x) = b$$

Convert to exponential form:

$$x = a^b$$

Absolute Value Equations:

$$|x| = a$$

Then:

$$x = a \text{ or } x = -a$$

Rational Equations:

Clear denominators by multiplying all terms by the least common denominator.

Calculus Equations

Derivative Rules:

Power Rule:
$$\frac{d}{dx}x^n = nx^{n-1}$$

Constant Rule:
$$\frac{d}{dr}c = 0$$

Constant Rule:
$$\frac{d}{dx}c=0$$

Product Rule: $\frac{d}{dx}(uv)=u'v+uv'$

Quotient Rule:
$$\frac{d}{dx}(\frac{u}{v}) = \frac{u'v - uv'}{v^2}$$

Chain Rule:
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

Integral Rules:

Power Rule:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

Exponential: $\int e^x dx = e^x + C$

Exponential:
$$\int e^x dx = e^x + C$$

Trigonometric:
$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \cos(x)dx = \sin(x) + C$$

Fundamental Theorem of Calculus:

$$\int_a^b f(x) dx = F(b) - F(a)$$

where $F'(x) = f(x)$

Limits:

$\lim_{x\to a} f(x)$

Evaluate by direct substitution, factoring, rationalizing, or L'Hôpital's Rule.

L'Hôpital's Rule:

If
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\infty}{\infty}$

$$\lim_{x o a} rac{f(x)}{g(x)} = \lim_{x o a} rac{f'(x)}{g'(x)}$$

Taylor Series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Integration by Parts:

$$\int u dv = uv - \int v du$$

Partial Derivatives:

Derivative of \boldsymbol{f} with respect to \boldsymbol{x} while holding other variables constant.

Gradient:

$$abla f = \left(rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}
ight)$$

Trigonometric Equations

Basic Identities:

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$an(heta) = rac{\sin(heta)}{\cos(heta)} \ \cot(heta) = rac{\cos(heta)}{\sin(heta)}$$

$$\cot(heta) = rac{\cos(heta)}{\sin(heta)}$$

$$1 + \tan^2(\theta) = \sec^2(\theta)$$

$$1+\cot^2(\theta)=\csc^2(\theta)$$

Double Angle Formulas:

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

$$an(2 heta) = rac{2 an(heta)}{1- an^2(heta)}$$

Sum and Difference Formulas:

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$$

$$\cos(a\pm b)=\cos(a)\cos(b)\mp\sin(a)\sin(b)$$

$$an(a \pm b) = rac{ an(a) \pm an(b)}{1 \mp an(a) an(b)}$$

Solving Trigonometric Equations:

Isolate the trigonometric function, then use inverse trigonometric functions to find solutions.

Consider the period and general solutions.

Law of Sines:

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Law of Cosines:

$$u = 0 + c = 20c\cos(A)$$

$$o^{-} = a^{-} + c^{-} - 2ac\cos(E)$$

$$a^2 = b^2 + c^2 - 2bc\cos(A)$$

 $b^2 = a^2 + c^2 - 2ac\cos(B)$
 $c^2 = a^2 + b^2 - 2ab\cos(C)$

Half Angle Formulas:

$$\sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}}$$
$$\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}}$$
$$\tan(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{\sin(\theta)}$$

$$\tan(\frac{\theta}{2}) = \frac{\sqrt{1-\cos(\theta)}}{\sin(\theta)}$$

Product-to-Sum Formulas:

$$\sin(a)\cos(b) = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$$

$$\frac{\cos(a)\sin(b)}{1} = \frac{1}{2} [\sin(a + b) + \sin(a + b)]$$

$$\begin{aligned} \sin(a)\cos(b) &= \frac{1}{2}[\sin(a+b) + \sin(a-b)]\\ \cos(a)\sin(b) &= \frac{1}{2}[\sin(a+b) - \sin(a-b)]\\ \cos(a)\cos(b) &= \frac{1}{2}[\cos(a+b) + \cos(a-b)] \end{aligned}$$

$$\sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

Kinematics:

 $v = v_0 + at$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

 $v^2 = v_0^2 + 2a(x - x_0)$

Newton's Second Law:

F = ma

Work and Energy:

 $W = Fd\cos(\theta)$

 $KE = \frac{1}{2}mv^2$

PE = mgh

Momentum:

p = mv

Impulse:

 $J = \Delta p = F \Delta t$

Gravitational Force:

 $F=Grac{m_1m_2}{r^2}$

Ohm's Law:

V = IR

Power (Electrical):

 $P = IV = I^2R = \frac{V^2}{R}$

Wave Equation:

 $v = f\lambda$

Ideal Gas Law:

PV = nRT

Geometric Equations

Area of a Circle:

 $A=\pi r^2$

Circumference of a Circle:

 $C=2\pi r$

Area of a Triangle:

 $A = \frac{1}{2}bh$

Pythagorean Theorem:

 $a^2 + b^2 = c^2$

Volume of a Sphere:

$$V={4\over 3}\pi r^3$$

Surface Area of a Sphere:

 $A=4\pi r^2$

Volume of a Cylinder:

 $V=\pi r^2 h$

Surface Area of a Cylinder:

 $A=2\pi rh+2\pi r^2$

Area of a Rectangle:

A = lw

Perimeter of a Rectangle:

P = 2l + 2w

Simple Interest:

I = PRT

Where:

- I = Interest
- P = Principal
- R = Rate
- T = Time

Compound Interest:

$$A = P(1 + \frac{r}{n})^{nt}$$

Where:

- A = Amount
- P = Principal
- r = interest rate
- n = number of times interest applied per time period
- t = number of time periods elapsed

Present Value:

$$PV = \frac{FV}{(1+r)^n}$$

Where:

- PV = Present Value
- FV = Future Value
- r = Discount rate
- n = Number of periods

Future Value:

$$FV = PV(1+r)^n$$

Where:

- FV = Future Value
- PV = Present Value
- r = Interest rate
- n = Number of periods

Annuity (Future Value):

$$FV = P \times \frac{((1+r)^n-1)}{r}$$

Where:

- FV = Future Value
- P = Periodic Payment
- r = Interest Rate
- n = Number of periods

Annuity (Present Value):

$$PV = P \times \frac{(1-(1+r)^{-n})}{r}$$

Where:

- PV = Present Value
- P = Periodic Payment
- r = Interest Rate
- n = Number of periods

Mortgage Payment:

$$M = P \frac{r(1+r)^n}{(1+r)^n-1}$$

Where:

- M = Monthly Payment
- P = Principal Loan Amount
- r = Monthly Interest Rate
- n = Number of Months

Return on Investment (ROI):

$$ROI = \frac{NetProfit}{CostofInvestment} \times 100$$

Mean:
$$\mu = \frac{\sum_{i=1}^n x_i}{n}$$

Variance:

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

Standard Deviation:

$$\sigma = \sqrt{rac{\sum_{i=1}^{n}(x_i-\mu)^2}{n}}$$

Z-Score:

$$z = \frac{x-\mu}{\sigma}$$

Correlation Coefficient:

$$r = rac{\sum_{i=1}^{n}(x_{i}-ar{x})(y_{i}-ar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-ar{x})^{2}}\sqrt{\sum_{i=1}^{n}(y_{i}-ar{y})^{2}}}$$

Regression Equation:

y = a + bx

where

 $b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$

and

 $a=ar{y}-bar{x}$

Probability:

 $P(A) = rac{ ext{Number of favorable outcomes}}{ ext{Total number of possible outcomes}}$

Conditional Probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes' Theorem: