
Midtem-2
A comprehensive cheat sheet covering essential Java data structures, algorithms, and object-oriented concepts for exam preparation. Includes

recursion, generics, sorting, Big-O notation, and more.

Recursion and Generics

Recursive Methods

Definition: A method that calls itself to solve a smaller subproblem. Must

have a base case to stop recursion.

Example (Factorial):

public int factorial(int n) {

 if (n == 0) {

 return 1; // Base case

 } else {

 return n * factorial(n - 1); // Recursive call

 }

}

Key Components:

Base Case: Condition to terminate recursion.

Recursive Step: Reduces the problem to a smaller instance.

Important considerations:

Ensure that each recursive call moves closer to the base case.

Avoid infinite recursion by carefully defining the base case.

Common Pitfalls: StackOverflowError if the recursion goes too deep (no

base case or base case not reached).

Generic Classes

Definition: Classes that can work with different data types without being

rewritten for each type. Use <T> (or other capital letters) to represent the

type parameter.

Example (Generic LinkedList):

public class LinkedList<T> {

 private Node<T> head;

 private static class Node<T> {

 T data;

 Node<T> next;

 Node(T data) {

 this.data = data;

 this.next = null;

 }

 }

 public void add(T data) { /* ... */ }

 public T get(int index) { /* ... */ }

}

Usage: LinkedList<Integer> intList = new LinkedList<>();

LinkedList<String> stringList = new LinkedList<>();

Benefits: Type safety, code reusability, and reduced code duplication.

Page 1 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/
https://cheatsheetshero.com/user/lasya-venna/1094-midtem-2-cheatsheet
https://cheatsheetshero.com/user/lasya-venna/1094-midtem-2-cheatsheet
https://cheatsheetshero.com/user/lasya-venna/1094-midtem-2-cheatsheet
https://cheatsheetshero.com/

Sorting Algorithms

Recursive Sorting Algorithms

Recursive Insertion Sort:

public static void

recursiveInsertionSort(int arr[], int n)

{

 if (n <= 1)

 return;

 recursiveInsertionSort(arr, n-1);

 int last = arr[n-1];

 int j = n-2;

 while (j >= 0 && arr[j] > last)

 {

 arr[j+1] = arr[j];

 j--;

 }

 arr[j+1] = last;

}

Merge Sort: Divides the array into halves,

recursively sorts them, and then merges the

sorted halves.

Quick Sort: Selects a ‘pivot’ element and

partitions the array around it, then recursively

sorts the two partitions.

Time Complexity (Merge Sort): O(n log n) in all

cases.

Time Complexity (Quick Sort): O(n log n) on

average, O(n^2) in the worst case.

Tracing Recursive Calls

Understanding Call Stacks: Each recursive call

adds a new frame to the call stack. Track the

values of variables and the return addresses.

Example: Tracing factorial(3) :

1. factorial(3) calls factorial(2)

2. factorial(2) calls factorial(1)

3. factorial(1) calls factorial(0)

4. factorial(0) returns 1

5. factorial(1) returns 1 * 1 = 1

6. factorial(2) returns 2 * 1 = 2

7. factorial(3) returns 3 * 2 = 6

Debugging Tip: Use print statements or a

debugger to step through the recursive calls and

inspect the values of variables at each step.

Binary Search

Definition: Efficient search algorithm for sorted

arrays. Repeatedly divides the search interval in

half.

Algorithm:

1. Find the middle element.

2. If the middle element is the target, return its

index.

3. If the target is less than the middle element,

search the left half.

4. If the target is greater than the middle

element, search the right half.

Time Complexity: O(log n)

Example:

public int binarySearch(int[] arr, int

target) {

 int left = 0;

 int right = arr.length - 1;

 while (left <= right) {

 int mid = left + (right - left)

/ 2; // Prevents overflow

 if (arr[mid] == target) {

 return mid;

 } else if (arr[mid] < target) {

 left = mid + 1;

 } else {

 right = mid - 1;

 }

 }

 return -1; // Target not found

}

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Big-O and Object-Oriented Concepts

Big-O Notation

Definition: Describes the upper bound of an

algorithm’s time or space complexity. Represents

the worst-case scenario.

Common Big-O Values:

O(1) - Constant time

O(log n) - Logarithmic time

O(n) - Linear time

O(n log n) - Linearithmic time

O(n^2) - Quadratic time

O(2^n) - Exponential time

O(n!) - Factorial time

Key Considerations: Focuses on how the runtime

or space requirements grow as the input size

increases.

Examples:

Accessing an element in an array by index:

O(1)

Searching for an element in a linked list: O(n)

Sorting an array using merge sort: O(n log n)

Constructors

Default Constructor: A constructor with no

parameters. If no constructor is defined, Java

provides a default constructor.

Parameterized Constructor: A constructor with

parameters to initialize object attributes.

this Keyword: Refers to the current object.

Used to differentiate between instance variables

and method parameters with the same name.

super Keyword: Refers to the parent class.

Used to call the parent class’s constructor or

access parent class members.

Copy Constructor: Creates a new object that is a

copy of an existing object.

* Shallow Copy: Copies the values of the object’s

fields. If the fields are references to other objects,

only the references are copied.

* Deep Copy: Copies the values of the object’s

fields and recursively copies the objects

referenced by those fields.

Example (Copy Constructor - Deep Copy):

public class MyClass {

 private int[] data;

 public MyClass(MyClass other) {

 this.data = new

int[other.data.length];

 for (int i = 0; i <

other.data.length; i++) {

 this.data[i] = other.data[i];

 }

 }

}

Inheritance and Polymorphism

Inheritance: A mechanism where a new class

(child class) inherits properties and behaviors

from an existing class (parent class). Use the

extends keyword.

Reference Diagrams: Visual representations of

object relationships and memory allocation.

Reference Semantics: Variables hold references

to objects, not the objects themselves. Assigning

one variable to another copies the reference, not

the object.

Polymorphism: The ability of an object to take on

many forms. Achieved through inheritance and

interfaces.

* Overriding: Providing a specific implementation

of a method in a subclass that is already defined

in its superclass.

* Overloading: Defining multiple methods in the

same class with the same name but different

parameters.

Example (Inheritance):

class Animal {

 public void makeSound() {

 System.out.println("Generic animal

sound");

 }

}

class Dog extends Animal {

 @Override

 public void makeSound() {

 System.out.println("Woof!");

 }

}

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

ArrayLists, Generics, and Expressions

ArrayList and Generics

ArrayList: A dynamic array that can grow or

shrink in size. Part of the java.util package.

Adding Elements: add(element) appends to

the end, add(index, element) inserts at a

specific index.

Removing Elements: remove(index) removes

the element at the specified index,

remove(Object o) removes the first

occurrence of the specified element.

Printing Elements: Iterate through the ArrayList

and print each element.

Example:

ArrayList<String> names = new

ArrayList<>();

names.add("Alice");

names.add("Bob");

System.out.println(names); // Output:

[Alice, Bob]

names.remove("Alice");

System.out.println(names); // Output:

[Bob]

Benefits of Generics with ArrayList: Type safety,

prevents runtime errors related to incorrect

types.

Boxing and Unboxing

Boxing: Automatic conversion of a primitive type

to its corresponding wrapper class object (e.g.,

int to Integer).

Unboxing: Automatic conversion of a wrapper

class object to its corresponding primitive type

(e.g., Integer to int).

Example:

Integer intObj = 5; // Boxing

int num = intObj; // Unboxing

Potential Issues: NullPointerException if

unboxing a null wrapper object.

Instantiating Concrete Classes vs Interfaces

Concrete Class: A class that provides

implementations for all its methods. Can be

directly instantiated using new .

Interface: A blueprint of a class. Contains only

abstract methods (methods without

implementation) and constants. Cannot be

directly instantiated, but can be implemented by

classes.

Example:

interface MyInterface {

 void doSomething();

}

class MyClass implements MyInterface {

 @Override

 public void doSomething() {

 System.out.println("Doing

something");

 }

}

MyClass obj = new MyClass(); // Valid

// MyInterface iface = new

MyInterface(); // Invalid - cannot

instantiate an interface

MyInterface iface = new MyClass(); //

Valid - instantiating a class that

implements the interface

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

