

A quick reference guide covering essential kinematics concepts, formulas, and graphs.

Basic Definitions

Distance and Displacement Speed and Velocity Acceleration Distance Total length of the path traveled Speed The rate at which an object is Acceleration The rate at which an object's by an object. It's a scalar quantity moving. It's a scalar quantity. velocity changes over time. It's a (magnitude only). vector quantity. $speed = \frac{distance}{time}$ Displacement The change in position of an $acceleration = \frac{\Delta velocity}{time}$ Velocity The rate at which an object object. It's a vector quantity changes its position. It's a \vec{a} Symbol (magnitude and direction). vector quantity. Meters per second squared Units $\Delta x = x_{final} - x_{initial}$ (m/s²) $velocity = \frac{displacement}{time}$ Symbol Distance: d Constant Implies the velocity changes at a Symbol Speed: v Displacement: Δx Acceleration uniform rate. Velocity: $ec{v}$ Units Meters (m) Units Meters per second (m/s) Distance always increases; Key Average Speed = (Total Average Difference Displacement can be positive, Speed/Velocity Distance) / (Total Time) negative, or zero. Average Velocity = (Total Displacement) / (Total Time)

Kinematic Equations

Constant Acceleration Equations

$v = v_0 + at$ vFinal velocity $\Delta x = v_0 t + \frac{1}{2}at^2$ v_0 Initial velocity $v^2 = v_0^2 + 2a\Delta x$ u_0 Initial velocity $\Delta x = \frac{1}{2}(v + v_0)t$ aAcceleration $\Delta x = vt - \frac{1}{2}at^2$ tTime Δx Displacement

Variables Definition

Motion Graphs

Position vs. Time (x-t) Graphs

Velocity vs. Time (v-t) Graphs

Acceleration vs. Time (a-t) Graphs

Slope	Represents the velocity of the object.	Slope	Represents the acceleration of the object.	Area under the curve	Represents the change in velocity.
Straight Line	Indicates constant velocity.	Area under the curve	Represents the displacement Horizontal Line of the object.	Indicates constant	
Curve	Indicates changing velocity (acceleration).				acceleration.
		Straight Line	Indicates constant acceleration.	Line at zero	Indicates zero acceleration
Horizontal Line	Indicates the object is at rest.				(constant velocity).
		Horizontal Line	Indicates constant velocity (zero acceleration).		
		Curve	Indicates changing acceleration.		

Problem-Solving Tips

General Strategies

- Read the problem carefully: Identify what is given and what you need to find.
- 2. Draw a diagram: Visualize the situation to help understand the problem.
- 3. Identify knowns and unknowns: List all known variables with their values and identify the unknown variable(s).
- 4. Choose the appropriate equation(s): Select the kinematic equation(s) that relate the knowns and unknowns.
- 5. Solve the equation(s): Substitute the known values into the equation(s) and solve for the unknown(s).
- 6. Check your answer: Ensure the units are consistent and the answer makes sense in the context of the problem.

Dealing with Vectors

- 1. Break vectors into components: Resolve vectors into their x and y components.
- 2. Apply kinematic equations separately: Use kinematic equations for each component.
- 3. **Recombine components:** Combine the components to find the resultant vector.