

Category Theory

A comprehensive cheat sheet covering monoidal category theory, its prerequisites, string diagrams, and compact closed categories. Useful for students and researchers in mathematics, physics, and computer science.

Prerequisites: Category Theory Basics

Categories

Categories		Products and Coproducts	
 Definition: A category C consists of: A class of objects, denoted ob(C). For each pair of objects A, B, a set of morphisms (or arrows) Hom(A, B). A composition law: for f: A → B and q: B → C, there 	 Axioms: Associativity: h ∘ (g ∘ f) = (h ∘ g) ∘ f Identity: f ∘ idA = f = idB ∘ f for f: A → B 	Product: The product of objects <i>A</i> and <i>B</i> in a category <i>C</i> is an object <i>A</i> \times <i>B</i> together with morphisms π_1 : <i>A</i> \times <i>B</i> \rightarrow <i>A</i> and π_2 : <i>A</i> \times <i>B</i> \rightarrow <i>B</i> such that for any object <i>X</i> and morphisms <i>f</i> : <i>X</i> \rightarrow <i>A</i> and <i>g</i> : <i>X</i> \rightarrow <i>B</i> , there exists a unique morphism <i>h</i> : <i>X</i> \rightarrow <i>A</i> \times <i>B</i> such that $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.	Coproduct: The coproduct of objects A and B in a category C is an object $A + B$ together with morphisms $l_1: A \rightarrow A + B$ and $l_2: B \rightarrow A + B$ such that for any object X and morphisms $f: A \rightarrow X$ and $g: B \rightarrow X$, there exists a unique morphism $h: A$ $+ B \rightarrow X$ such that $h \circ l_1 = f$ and $h \circ l_2$ = g.
 exists a morphism g ∘ f: A → C. For each object A, an identity morphism idA: A → A. 		 Examples (Set): Product: Cartesian product of sets. Coproduct: Disjoint union of sets. 	 Examples (Vect): Product: Direct product of vector spaces. Coproduct: Direct sum of vector spaces.
 Examples: Set: Sets as objects, functions as morphisms. Vect: Vector spaces as objects, linear transformations as morphisms. Grp: Groups as objects, group homomorphisms as morphisms. 	Functors: A functor $F: C \rightarrow D$ maps objects and morphisms from category C to category D preserving composition and identity.		
Isomorphisms: A morphism $f: A \rightarrow B$ is an isomorphism if there exists a morphism $g: B \rightarrow A$ such that $g \circ f = idA$ and $f \circ g = idB$.	Natural Transformations: A natural transformation α : $F \rightarrow G$ between functors $F, G: C \rightarrow D$ assigns to each object A in C a morphism αA : $F(A) \rightarrow G(A)$ in D such that for any morphism f : $A \rightarrow B$ in $C, G(f) \circ \alpha A = \alpha B \circ F(f)$.		

Monoidal Categories

Monoidal Category Structure

Definition: A monoidal category $(C, \otimes, I, \alpha, \lambda, \rho)$ consists of:

- A category C.
- A bifunctor \otimes : $C \times C \rightarrow C$ (tensor product).
- An object $l \in ob(C)$ (unit object).
- A natural isomorphism α : (A \otimes B) \otimes C \rightarrow A \otimes $(B \otimes C)$ (associator).
- Natural isomorphisms $\lambda: I \otimes A \rightarrow A$ and $\rho: A$ $\otimes I \rightarrow A$ (left and right unitors).

Axioms (Coherence):

- Pentagon identity: A coherence condition for the associator.
- Triangle identity: A coherence condition relating the associator, left unitor, and right unitor.

Examples of Monoidal Categories

- (Set, ×, {*}): Sets with Cartesian product and a singleton set as the unit.
- (Vect, ⊗, K): Vector spaces over a field K with the tensor product and K itself as the unit.
- (Cat, ×, 1): Categories with the Cartesian product and the terminal category as the unit.

Braided Monoidal Categories

Definition: A braided monoidal category is a monoidal category C with a natural isomorphism $\beta: A \otimes B \rightarrow B \otimes A$ (braiding) satisfying additional coherence axioms.

Examples:

- Symmetric monoidal categories where $\boldsymbol{\beta}$ is an involution ($\beta^2 = id$).
- The category of representations of a quantum group.

String Diagrams

Basic Conventions

- Objects are represented by wires.
- Morphisms are represented by boxes on the wires.
- Composition is represented by connecting boxes vertically.
- Tensor product is represented by placing wires side by side horizontally.

Compact Closed Categories

Definition and Properties

Definition: A compact closed category is a symmetric monoidal category where every object *A* has a dual object *A*^{**} and morphisms $\eta A: I \rightarrow A \otimes A^{**}$ (unit) and $\epsilon A: A^{**} \otimes A \rightarrow I$ (counit) satisfying the snake equations.

Snake Equations:

 $(\epsilon A \otimes i dA) \circ (i dA^{**} \otimes \eta A) = i dA^{**}$

 $(\mathsf{id} A \otimes \epsilon A^{\star\star}) \circ (\eta A \otimes \mathsf{id} A) = \mathsf{id} A$

String Diagrams for Monoidal Categories

- Associator $\alpha : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$ is a crossing.
- Left unitor $\lambda: I \otimes A \to A$ is a bending to the left.
- Right unitor $\rho: A \otimes I \to A$ is a bending to the right.
- Identity id: A \rightarrow A is a straight wire.

Graphical Representation

- The unit ηA is represented by a cup.
- The counit εA is represented by a cap.
- The snake equations are depicted as straightening a bent wire.

Examples

String diagrams provide a visual representation that makes complex compositions and tensor products easier to understand. For example, a diagram showing the composition of multiple morphisms in a monoidal category will clearly show the flow of data and how different parts of the diagram interact.

Examples

- **Hilb**: Hilbert spaces with bounded linear operators.
- Rel: Sets and relations.