Browse all cheatsheets
A quick reference guide covering essential kinematics concepts, formulas, and graphs.
A comprehensive cheat sheet covering various machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with deep learning architectures.
✅ 1. Supervised Learning • Regression o Linear Regression o Logistic Regression o Polynomial Regression o Ridge Regression o Lasso Regression o ElasticNet o Support Vector Machines (SVM) o Decision Trees o Random Forest • Classification o Logistic Regression o K-Nearest Neighbors (KNN) o Support Vector Machines (SVM) o Decision Trees o Random Forest o Naive Bayes o Confusion Matrix o Stochastic Gradient Descent o Gradient Boosting o AdaBoost o XGBoost o LightGBM o CatBoost ________________________________________ 🔍 2. Unsupervised Learning • Clustering 🔹 1. Centroid-Based Clustering • K-Means • K-Medoids • Mean-Shift ________________________________________ 🔹 2. Density-Based Clustering • DBSCAN • OPTICS • HDBSCAN ________________________________________ 🔹 3. Hierarchical Clustering • Agglomerative Clustering • BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) • Affinity Propagation ________________________________________ 🔹 4. Distribution-Based Clustering • Gaussian Mixture Models (GMM) • Dimensionality Reduction o PCA (Principal Component Analysis) o t-SNE o UMAP o ICA (Independent Component Analysis) o LDA (Linear Discriminant Analysis) ________________________________________ 🔁 3. Semi-Supervised Learning • Self-Training • Label Propagation • Label Spreading ________________________________________ 🔄 4. Reinforcement Learning • Q-Learning • Deep Q-Networks (DQN) • SARSA • Policy Gradient Methods • Actor-Critic • Proximal Policy Optimization (PPO) • Deep Deterministic Policy Gradient (DDPG) ________________________________________ 🧠 5. Deep Learning Algorithms 🔹 1. Feedforward Networks (FNN) • Multilayer Perceptron (MLP) • Deep Neural Networks (DNN) ________________________________________ 🔹 2. Convolutional Neural Networks (CNN) • LeNet • AlexNet • VGGNet • GoogLeNet (Inception) • ResNet • DenseNet • EfficientNet • MobileNet • SqueezeNet ________________________________________ 🔹 3. Recurrent Neural Networks (RNN) • Vanilla RNN • Long Short-Term Memory (LSTM) • Gated Recurrent Unit (GRU) • Bidirectional RNN • Deep RNNs • Echo State Networks (ESN) ________________________________________ 🔹 4. Attention-Based Models / Transformers • Transformer • BERT • GPT (GPT-1, GPT-2, GPT-3, GPT-4) • RoBERTa • ALBERT • XLNet • T5 • DistilBERT • Vision Transformer (ViT) • Swin Transformer • DeiT • Performer • Longformer ________________________________________ 🔹 5. Autoencoders • Vanilla Autoencoder • Sparse Autoencoder • Denoising Autoencoder • Contractive Autoencoder • Variational Autoencoder (VAE) ________________________________________ 🔹 6. Generative Adversarial Networks (GANs) • Vanilla GAN • Deep Convolutional GAN (DCGAN) • Conditional GAN (cGAN) • CycleGAN • StyleGAN • Pix2Pix • BigGAN • StarGAN • WGAN (Wasserstein GAN) • WGAN-GP ________________________________________ 🔹 7. Reinforcement Learning (Deep RL) • Deep Q-Network (DQN) • Double DQN • Dueling DQN • Policy Gradient • REINFORCE • Actor-Critic • A3C (Asynchronous Advantage Actor-Critic) • PPO (Proximal Policy Optimization) • DDPG (Deep Deterministic Policy Gradient) • TD3 (Twin Delayed DDPG) • SAC (Soft Actor-Critic)
A comprehensive cheat sheet covering core machine learning algorithms, evaluation metrics, and essential concepts for interview preparation. Includes supervised, unsupervised learning, deep learning and NLP.
A concise cheat sheet outlining the key concepts, algorithms, and differences between supervised and unsupervised learning methods in machine learning.
List of useful tips & tricks that I'm collecting
A comprehensive cheat sheet covering monoidal category theory, its prerequisites, string diagrams, and compact closed categories. Useful for students and researchers in mathematics, physics, and computer science.
A comprehensive cheat sheet covering database concepts, ER modeling, table creation, data population, and querying using SQL. From understanding databases to crafting advanced queries, this guide provides a quick reference for database design and manipulation.
A comprehensive cheat sheet covering the key aspects of Early Elizabethan England, from Queen Elizabeth's government and religious policies to the challenges she faced at home and abroad, and the vibrant Elizabethan society during the Age of Exploration.
A comprehensive guide to Cypress, the end-to-end JavaScript testing framework. This cheatsheet covers installation, basic syntax, DOM interaction, assertions, network request handling, data management, and best practices for writing effective and maintainable tests.
A concise guide to using Selenium WebDriver with Ruby for automated web testing. Covers setup, basic commands, element interaction, waits, and best practices.
A comprehensive cheat sheet for using Selenium WebDriver with C#, covering setup, basic operations, element interactions, waits, and best practices. Ideal for beginners and intermediate users.